be addressed. In particular, the subject will concentrate on the development, measurement, and analysis of “real-world” data involving natural co-variation between variables. On completing this course, students will acquire the data analytic skills—e.g., ANOVA, MANOVA, hierarchical regression analysis, EFA, CFA and SEM—needed to competently complete a quantitatively based DBA thesis.

BUS 7920 Qualitative Approaches to Research (3,*,0)

This course is intended to provide students with the knowledge and skills needed to do qualitative research at a doctoral level. Qualitative research focuses on understanding, rather than predicting or controlling, phenomena. It is usually contrasted with traditional experimental and statistical research. Included in this course will be the discussion and application of five principle qualitative methodologies: case study, ethnography, phenomenology, narrative, and grounded theory. Participants will also learn the associated skills of interviewing and observation. The main objective of the course is for students to learn the practicalities, scope and nature of qualitative research and to appreciate its rigor and procedures.

BUS 7980 Professional Development Workshops (5,*,0)

The Professional Development Workshops provide forums for dialogue among academics, practitioners and students on current issues relevant to today’s organizations. International and local academics who are involved in current programs at HKBU and who have expertise in a particular area will be invited to conduct the workshops in conjunction with local business leaders. Topics related to the core areas of strategy, and corporate governance will be emphasized to ensure that the workshops cohere with the major aims of the course as a whole. Normally, four one-day workshops will be offered every year, and students are expected to attend eight of these as a requirement for graduation. Pre-reading materials may be distributed before each workshop to facilitate discussion and learning activities.

BUS 7991-4 DBA Thesis (24,*,0)

The thesis is the most significant learning experience of the programme. It is a capstone of the course in that students are expected to apply theories learned in the taught subjects to analyse and understand/solve organizational issues/problems. In other words, students are expected to do applied research that has practical implications for organizations. It is not enough to simply make a contribution to theory, although such contributions, in conjunction with practical contributions to the professional practice of management are encouraged. This is in contrast with a PhD thesis, which places more emphasis on the development of new knowledge and theoretical perspectives. Students are expected to research real organizational issues by drawing upon and applying appropriate theories and research. Research methods and analyses should be aligned properly with the research question(s). By going through a systematic process of investigation, students will enhance their competencies in doing research. The thesis will normally be around 50,000 words, and it should be of publishable quality.

CHEM 1010 Ocean Voyage—Science in the Sea (3,3,0)

This course is for students who are curious to learn about the ocean and its science, history and more. Students will be introduced to the concepts of marine and environmental science, as well as cultural, economic and political impacts to address marine-environmental issues at local and regional scales.

CHEM 1111-2 Organic Chemistry I & II (3,3,0)

Prerequisite: A-Level Chemistry or Foundation of Chemistry

This course provides a mechanistic approach to the studies of organic reactions with special emphasis on stereochemistry, conformation and the use of modern spectroscopic methods in structure determination. It also stresses molecular rearrangement, aromatic chemistry, di- and poly-functional compounds, and the design of multi-step synthesis.

CHEM 1121-2 Organic Chemistry Laboratory I & II (1,0,3)

Prerequisite: A-Level Chemistry (for CHEM 1121) and CHEM 1121 Organic Chemistry Laboratory I (for CHEM 1122)

This laboratory course is designed to familiarize the students with the application of organic chemistry. The preparation skills of the students are to be developed by performing different types of organic reactions. This course is open to Chemistry majors only.

CHEM 1220 Analytical Chemistry Laboratory (1,0,3)

This course provides students with practical experience in applying the techniques studied in Analytical Chemistry and Instrumental Analysis to the solution of analytical problems, including those of a practical nature. This course is open to Chemistry majors only.

CHEM 1230 Analytical Chemistry (3,3,0)

Prerequisite: A-Level Chemistry or consent of instructor

This course is intended to be the first course in the programme course for all Chemistry majors. It is aimed to provide the students with a solid understanding of all the fundamental concepts and physical principles in chemistry necessary for the study of the more advanced or specialized programme course that follow. The topics discussed include atomic and molecular structures, chemical bonding, intermolecular forces and states of matter, and acid-base chemistry.

CHEM 1260 Fundamentals of Chemistry (3,3,0)

Prerequisite: A-Level Chemistry or Foundation of Chemistry

This is an integrated course covering the fundamentals of Chemistry and CHEM 1111-2 Organic Chemistry II, CHEM 1230 Analytical Chemistry and CHEM 1330 Physical Chemistry I. Students will engage in small group discussion and find solutions to assigned problems under the guidance of staff members of the Department of Chemistry.

CHEM 1251 Integrated Chemistry Tutorials I (0,0,1)

This is an integrated course of CHEM 1260 Fundamentals of Chemistry and CHEM 1111-2 Organic Chemistry II. Students will engage in small group discussion and find solutions to assigned problems under the guidance of staff members of the Department of Chemistry.

CHEM 1310 Physical Chemistry I (3,5,3,1)

Prerequisite: A-Level Chemistry

This course provides students with the fundamental concepts of chemical thermodynamics and its application in electrochemistry and solution properties, phase equilibria.

CHEM 1320 Physical Chemistry Laboratory I (1,0,3)

Prerequisite: CHEM 1330 Physical Chemistry I

CHEM 2320 Physical Chemistry Laboratory II (1,0,3)

Prerequisite: CHEM 2330 Physical Chemistry II

These courses provide students with practical work related to the principles studied in Physical Chemistry I & II. This course is open to Chemistry majors only.

CHEM 1510 Chemistry for Life Science (3,3,0)

Prerequisite: A-Level Chemistry or AS-Level Chemistry or consent of instructor

This course gives a detailed treatment of topics selected from Organic and Physical Chemistry. The discussion of